
Peter Cottle  SID 19264824 

ME 280A – 12/08/2011 

Homework Assignment #6 

 

Introduction: 
 For this homework project, the class finally steps away from the comfortable one dimensional 

world and begins a journey into the two dimensional world. Here we will study the finite element 

formulation for a 2D thermal diffusion problem; in this scenario, temperature is simply a scalar value and 

thus there is only one unknown per node. 

 This journey will involve revisiting the basics of the finite element method (except in 2D) and also 

the exploration of new concepts. We will use the penalty method to impose boundary conditions, look at 

variations in thermal properties through the material, and perform adaptive meshing over areas with 

material discontinuities.  

 

Objectives: 
In this homework we have several challenges. The first is to analytically derive the weak form for 

the thermal diffusion equation in two dimensions, taking care to explicitly write out all the necessary 

matrices and vectors needed for the final formulation. The second is solve the test case analytically; if done 

correctly, we will obtain a solution that is independent of the radial position. 

The next series of objectives involves the actual implementation of this finite element code. We will 

write a completely new program from scratch to implement this formulation in 2D. Other sections will go 

over this in further detail, but this essentially involves a lot of method writing for the phi basis functions, 

the isoparametric mapping, the arch mesher, and the right-hand-side calculation. After all of this code is 

complete, we will compare the numerical solution to the analytic one. We will also compare different 

boundary condition implementations and look at adaptive meshing. 

 

Procedure / Implementation: 

 
 This homework involved a fair amount of coding, so an outline of each method (as well as the 

overall loop) will be detailed below. 

 

Methods: 

 

 ArchMesher 

o Takes in meshing parameters (theta step size, radius step size) and outputs the connectivity 

map and the global node coordinates. 

o Pseudo Code: 

 



Number of points in R direction = r_range / r_step + 1 

Number of points in Theta direction = theta_range / theta_step + 1 

Number of points = rPoints * thetaPoints; 

 

Initialize the global coordinate matrix 

 

For uniform meshing, do: 

 Step through in theta, starting at 0 and incrementing by theta step 

towards pi 

  Step through in r, starting at r_being and ending at r_end 

   Calculate x by taking r * cos(theta) 

   Y = r * sin(theta) 

   This x and y correspond to the coordinates of this node 

 

For adaptive meshing, do: 

Calculate the small theta step and the large theta step depending on 

the number of elements desired on either side 

Loop through r and theta as before, changing theta step depending on 

which part of the arch is being meshed. 

 

For the connectivity, do: 

Calculate the number of theta slices (one less than theta points) and 

the number of r slices (one less than rPoints) 

 

Step through each thetaSlice 

 Step through each rSlice 

The lower left node number is 1 + (sliceCounter-1) * 

(numElementsPerSlice+1); 

  LR is just LL + 1 

  UL is just the LL + numElementsPerSlice + 1 

  UR is just the UL + 1 

  Store these numbers in the connectivity map at this element 

row, plot if necessary 

 

Return the connectivity map and global node coordinates 

 

 AssembleK 

o Takes in a local 4x4 K matrix and assembles into the global matrix 

o This method was implemented in earlier homeworks 1-5, consult those for implementation 

 assembleLoading 

o Similar to assembleK, but for a 4x1 vector for the right-hand-side. Again, see earlier 

homeworks for this implementation. 

 elementBoundary 

o Take in a given boundary function and calculate the corresponding 4x1 vector for this 

boundary function over the given element 

o Pseudo Code: 

 



First, return a zero vector if this element does not lie on the boundary 

where the boundary function is specified.  

 

Next, find the line deformation (Cauchy deformation tensor) for this line 

integral. It is either the sqrt( rT * F * F-t * r) or just the ratio of the 

lengths 

 

Get the phi functions from the getPhis() function. 

 

Get the isoparametric mapping from the getX1X2 function for this element. 

 

Compile the total function as a 4x1 vector, each entry corresponding to a phi 

function * the boundaryFunction at this z1 and z2 value (after isoparametric 

mapping) * the ratio of lengths. 

 

Now, do 1D integration with the Gaussian1D function. Important: fix z1 or z2 

(usually z2 in our case) to be -1 or +1 to obtain the line integral at the 

correct edge of the element. 

 

Return this result. 

 

 elementK 

o Take in a current element, the connectivity map, and the global coordinates. Returns the 

4x4 local matrix of the stiffness calculation 

o Pseudo Code: 

 
Check if this element overlaps the thermal hole by checking the thermal 

conductivity at each nod and the midpoint of each edge. If any of these 

points are inside the thermal “hole,” turn on Gaussian integration with 5 

points instead of 2. 

 

Get the f inverse function handle from the fInverse function.  

 

Get the Jacobian function handle from the Jacobian function. 

 

Get the D matrix from the D function. 

 

Get the isoparametric mapping from the getX1X2 function. 

 

Finally, compile the complete function by multiplying (fInv * D)’ * 

conducitivity * fInv * D * Jacobian. 

 

Integrate this in 2D to get the 4x4 

 

 elementLoading 

o Perform the same calculation for the elementBoundary (aka the 4x1 vector of phi 

functions), but use the loading function instead. Integrate this in 2D. 

 Gaussian1D integrate 



o To integrate in 1d on a 2d function, hold either z1 or z2 constant and use the weights and 

Gaussian points on the other free variable. 

 Gaussian2D integrate 

o Instead of having one loop, have two nested for loops that loop over each Gaussian point for 

each variable. Multiply all of these weights and points together to get a final answer. 

 GetD function 

o Return the D matrix, aka the partial derivatives of the phi functions. 

 This is simply a 2x4 matrix corresponding to dPhi_1_dz1, dPhi_2_dz1, etc on the first 

row and the same partials but with respect to z2 on the second row. 

 GetF inverse function 

o Use the jacobian function to obtain the jacobian function and the components of the F 

matrix. Return the inverse of the F matrix by swapping the diagonals of the 2x2, flipping the 

sign on the off diagonals, and dividing by the determinant (aka the jacobian).  

 Get Jacobian 

o Return the Jacobian function and the F deformation mapping for a given element: 

o Pseudo Code: 
 

First, get all the phi functions and phi partial functions from the getPhis 

function. 

 

Get the global nodes for this element with the connectivity map. 

 

Compile the x1 and x2 functions with the isoparametric mapping. Aka x1 is a 

function of xCoordinateAt1 * phi1 + xCoordinateAt2 * phi2, etc 

 

Compile the deformation matrix F by finding the partial derivatives of this 

isoparametric mapping. Aka, dx1/dz1 is phiPartial{1,1} * xCoordinateAt1 + 

phiPartial{2,1} * xCoordinateAt2, etc.  

 

Return these function handles for use in other functions. 

 

 Get Phis 

o Simply return function handles for all the phi functions and phi partial derivatives in a cell 

matrix for easy access. These were analytically derived in class and thus I will not go over 

them here. 

 Get x1x2 

o Return the isoparametric mapping functions. These were computed in the getJacobian 

function and will not be detailed here.  

 doPenaltyTerms 

o When using the penalty term to impose the boundary conditions, a few simple operations 

were performed on the matrix. These are detailed in the pseudo code below: 

 
For the stiffness matrix, first determine the correct Pstar to use. 

To determine this, find the max(kStiffness) and multiply this by the P 

scaling factor, usually a number that ranges from 100 to 1000. 



 

After obtaining Pstar, modify the stiffness matrix by adding Pstar to each 

node that is at a fixed boundary temperature. This is performed in a simple 

loop. 

 

For the right hand side, modify each row that corresponds to each node with a 

fixed boundary temperature. This is performed by adding the Pstar * T_0 term 

to the R vector at the indicated node. 

 

Now, skip all the row elimination and simply solve. Depending on the 

magnitude of Pstar, the resulting temperatures at the fixed nodes will be 

very close to their true values. 

 

 

 The main homework 6 function, the flowchart of which is presented below: 

 

 

 
 

Finally, a summary of the main vectors and matrices used in the program: 

 

 gNodeToCoord 

o This matrix maps the node number to actual coordinates in space: 

 

Row Column1 Column2 

Node 1 x1 y1 



Node 2 x2 y2 

Node 3 x3 y3 

… … … 

Node M xM yM 

 

 connectMap 

o This matrix maps the element number to the nodes that it connects 

Row Col1 Col2 Col3 Col4 

Element 
1 

Lower Left 
Node 

Lower Right 
Node 

Upper Right 
Node 

Upper Left 
Node 

Element 
2 

Lower Left 
Node 

Lower Right 
Node 

Upper Right 
Node 

Upper Left 
Node 

Element 
3 

Lower Left 
Node 

Lower Right 
Node 

Upper Right 
Node 

Upper Left 
Node 

… … … … … 

Element 
N 

Lower Left 
Node 

Lower Right 
Node 

Upper Right 
Node 

Upper Left 
Node 

 

 elementK 

o This is the 4x4 matrix that is the result of the 2D Gaussian Integration for the elemental 

stiffness matrix. This matrix is then divided up and assembled into the global stiffness 

matrix. 

 elementBoundary 

o This is the 4x1 vector that is the result of the 1D Gaussian Integration for the element 

boundary condition. It is 0 for most elements (for most elements do not lie on the 

prescribed Von Neumann boundary zone), but it is nevertheless divided up and assembled 

into the global R vector. 

 elementLoading 

o This the 4x1 vector that is the result of the 2D Gaussian Integration for the loading function 

over the element. It is divided up and assembled into the global R vector almost 

immediately after being calculated. 

 kGlobal 

o The global stiffness matrix, M rows by M columns where M is the number of nodes 

 R 

o The global right hand side vector, M rows by 1 column. 

 fixedTempNodes 

o A simple column vector that describes which nodes are at the fixed temperature boundary 

condition. It is calculated from a loop and its length is always equal to the number of radial 

elements. 

 

Weak Form: 

 

 



The procedure for finding the weak form of the thermal diffusion function was quite lengthy. First, 

we must begin with the PDE: 

 

 Next, hit the entire expression with a kinematically admissible test function: 

 

 Integrate and split up: 

 

Next, this is where we would normally use the chain rule “sleight of hand” to weaken the 

differentiability of the left term. Since we are operating in 2D though, we must use the equivalent of this 

trick, which is essentially the divergence theorem that states: 

 

 Applying this to the above integral: 

 

Substituting into the integral expression: 

 

Then use the divergence theorem to simplify the second term: 

 

Define this flux condition as the q_0 term: 

 

And substitute in, and be careful to note that the traction boundary condition does not overlap the 

dirichlet temperature boundary condition: 



 

 

We have now obtained the weak form for the thermal diffusion problem. Now substitute in our 

bilinear basis functions to obtain: 

 

 And then transform to the zeta world, where J is the jacobian and J_Gamma is the line jacobian 

 

 Now we can eliminate the arbitrary b coefficients and express in computational format, where F is 

the deformation matrix and D is the 2x4 matrix of phi partial derivatives 

 

Analytical Solution: 

 Now that we have the weak form for the thermal diffusion problem, let us look for an analytical 

solution to the prescribed test case by going back to the PDE and substituting in the following expressions: 

 



Substituting in for the loading function: 

 

Taking the partial derivatives in the polar coordinate system 

 

Simplifying: 

 

Multiplying by R squared and removing the dependence on R: 

 

Integrating once: 

 

Integrating once again: 

 

Substituting for the boundary condition: 

 

Obtaining C_1 is zero: 

 

Obtaining the second constant of integration: 



 

Combining into final expression: 

 

Thus we have finally obtained an analytical solution to the given test case. 

 

Findings 
Mesher: 

I implemented a very general mesher, as per instructions from the homework. My mesher is 

capable of rendering arches, circles, circles with holes, and rectangles – all of which can have different 

stepping in either directions. The rest of the FEM algorithm only depends on the connectivity map and the 

global node coordinates, so the mesher is quite independent of the rest of the FEM solution. The mesher 

still has to maintain the convex property of the elements (and the positive jacobian) to have the program 

work, but this is guaranteed with the current mesher. 

A plot of the mesher making a rectangle: 

 
 A square with different stepping in either direction: 



 
 

A mesh of an arc: 

 

 
A mesh of a circle with a hole: 



 
 

Circle meshing with no hole and finer meshing in the middle: 

 

 



 

 As you can see, the mesher I built is quite general and works for many different geometrical shapes 

(as per instructions from the homework). 

 As a further note, I plot all the node locations with a star and all the element connectivity with blue 

lines. Hence from these above plots, one can see that both the global coordinates of the nodes and the 

connectivity of the elements is correct and uniform. 

 

Penalty Term (Pstar) Selection: 

 

 When choosing my Pstar variable for the penalty method, I chose the following heuristic: I find the 

maximum value of the stiffness matrix and multiply this by a Pstar scaling factor to obtain Pstar. This 

scaling factor can range from 10 to 100,000; the results for different scaling factors are shown below. Pstar 

is then used to modify the stiffness matrix at the nodes that are at a fixed temperature. It is also multiplied 

by the boundary condition temperature (T_0) and added to the right hand side to perform the complete 

penalty method. 

 In order to determine the relationship between the boundary condition accuracy and the Pstar 

scaling factor, I compiled a table with the same mesh problem solved with various Pstar scaling amounts: 

 

Penalty Method Accuracy As Function of Pstar Scaling Factor 

Pstar Scalaing 1 10 100 1000 10000 100000 

Boundary Node Temp      

101 99.1146 99.9184 99.9919 99.9992 99.9999 100 

102 98.656 99.8569 99.9856 99.9986 99.9999 100 

103 98.7397 99.8703 99.987 99.9987 99.9999 100 

104 98.8713 99.8825 99.9882 99.9988 99.9999 100 

105 99.354 99.9455 99.9947 99.9995 99.9999 100 

 

Incredibly, even a Pstar scaling amount of just one will produce boundary conditions that are quite 

close to their true values. At a Pstar scaling amount of 100,000, the penalty method is indistinguishable 

from the fixed temperature method. 

It is important to remember that although the penalty method is quite easy to implement and 

prevents any changes to our global stiffness matrix, it severely affects the condition number of the matrix 

and thus the rate of convergence for operations like the conjugate gradient solvers. Because of this, I kept 

my Pstar scaling factor to be 10,000 for the rest of the calculations which seemed like an optimum balance 

between condition number and boundary condition accuracy. 

 

Test Case: 

 

 After deriving the analytical solution, I obtained this as the equation that describes temperature as 

a function of theta: 

       (  )      

 



 After plugging this into Matlab and solving for the nodal thermal diffusion (assuming that theta is 0 

at the right side of the arch), I obtained this plot for temperature across the arch: 

 

 
 

 As you can see, the resulting plot shows a very smooth gradient. I used 80 elements in the theta 

direction and ten elements in the r direction for the above mesh. The matlab code for this solution is below: 

 
theta = atan(gNodeToCoord(:,2) ./ gNodeToCoord(:,1)) 

for i = 1:length(theta) 

if(theta(i) < 0) 

theta(i) = theta(i) + pi; 

end 

end 

answer = 100 + 20*sin(2*theta) 

(plot as normal) 

  

I then programmed in this test case into my finite-element based heat diffusion solver. After letting 

Matlab crunch the numbers, I obtained the following plot: 

 



 
 

As you can see, these two plots are visually identical in terms of temperature distribution. Furthermore, I 

manually inspected the numerical answers of the last 10 non-fixed temperature nodes, and the differences 

in temperature are only one or two hundredths of a degree off which is easily accounted for due to 

numerical error. 

 

Finite Element Method for 2-Phase structure: 

 

 The mesh for the 2-phase structure is considerably finer (50 radial direction elements and 400 

theta direction elements), and thus the program took considerably longer to run. For 20,000 elements, the 

overall stiffness matrix was 20451x20451 which was a considerable memory overhead, even on the fast 

desktop computer that I built. I had to switch to a conjugate gradient solver here, for the inverse operation 

on the K matrix would crash Matlab (and my entire computer). A CG solver was considerably faster and did 

not cause my computer to crash. 

Regardless, after letting the program run in the two-phase structure code, I solved and obtained the 

following plot for fixed boundary conditions and uniform meshing: 

 



 
 

Next, I switched my code to perform the penalty method instead of fixed boundary conditions. I used a 

P_star scaling factor of 10,000 and got the following plot with uniform meshing: 

 

 



 

After these two solutions, I went ahead and programmed in the adaptive meshing for a finer mesh 

in the discontinuity zone. The plots for these meshes were discussed in the mesher section above. After 

solving here, I obtained the following plot for adaptive meshing and penalty method: 

 
 As you can see, there is considerably more detail of the thermal flux around the area with varying 

thermal conductivity. Finally, I switched back over to the fixed temperature method for the Dirichlet 

boundary conditions just to make sure it was the same: 

 
 As expected, the plot is visually identical.  

 



 

Discussion 
  

 This homework was a great introduction into the finite element method in two dimensions and also 

served to make some great points about the actual implementation. The penalty method works surprisingly 

well (even for low Pstar amounts) and is quite easy to implement, so I can see why it is the preferred option 

for 3D finite element problems. 

 We also got to see the interplay between the loading function here (which either added or 

subtracted heat to the arch), the flux boundary condition (which extracted heat from the arch), and the 

fixed boundary condition (which held the left side at a constant temperature). All of these factors combined 

together to form a nice sinusoidal temperature gradient throughout the arch, showing the interplay 

between the flux extracting heat from the entire structure and the loading function adding heat to the arch 

in certain places. 

 Furthermore, the arch thermal diffusion problem had quite different solutions when the thermal 

conductivity varied throughout the arch rather than staying constant. For the constant case, we were able 

to determine an analytical solution so the FEM solution just simply complemented our earlier work. 

For the varying thermal conductivity problem, there is no way I could have predicted the solution 

would take such an interesting distribution throughout the arch. I thought the circular region would just 

show a slightly denser gradient or some other small factor, but the change in material property completely 

changed the thermal distribution around the entire arch. This is because the extremely low conductivity 

traps the heat in this region; all the heat generated on the right side and all the “cold” generated on the left 

side meet in the middle in this rather bizarre fine temperature gradient. Clearly, it is difficult to interpret 

the nature of thermal distribution over complex structures, only further solidifying how valuable the FEM 

method is for industry. 

Finally, the derivation of the weak form was great preparation for the final and showed how the 

divergence theorem must be applied in order to obtain the boundary flux conditions, which is one of the 

“non essential” boundary conditions as Debanjan mentioned in the final lecture. 

In conclusion, this homework was a great summary of the finite element method in two dimensions 

and another useful part of ME 280a. 

 

APPENDIX: 

 Like in homework #1, the raw data for the above figures is not provided here but can be provided 

upon request. It is also quite easily generated from the included matlab code below. Note: When running 

the code, change the Booleans at the beginning of the mainhw6 file to turn on/off adaptive meshing, 

the thermal discontinuity, the penalty method, and the plotting of the mesh. 
 

 

function [ gNodeToCoord, connectMap ] = 

archMesher(r_step,theta_step,shouldPlot,doFinerMeshing,bigMult

) 

%ok so first we will step in the theta direction 

%then we will step in the r direction and generate 

%those points. Note that the total 

%number of points to generate is 

%((r_range/r_step+1)*(theta_range/theta_step+1)) 

r_end = 3; 

r_begin = 2; 

r_range = r_end-r_begin; 

theta_begin = 0; 

theta_end = pi; 

theta_range = theta_end-theta_begin; 

 

disp 'Hi!' 

N_r = 4; 

N_theta = 20; 

% N_r = 10; 

% N_theta = 80; 

N_r = 50; 

N_theta = 400; 

r_step = 1/N_r; 

theta_step = pi/N_theta; 

big_mult = 2; 

T_0 = 100; 

PstarFactor = 100; 

shouldplot = false; 

doThermalHole = false; 



numPoints = (theta_range/theta_step + 1) * (r_range/r_step + 

1); 

numPoints = round(numPoints) 

gNodeToCoord = zeros(numPoints,2); 

coordNum = 1; 

if(shouldPlot) 

    close all 

    figure(1) 

    hold on 

end 

if(~doFinerMeshing) 

    for theta=theta_begin:theta_step:theta_end 

        for r=r_begin:r_step:r_end 

            %get the x 

            x = r*cos(theta); 

            y = r*sin(theta); 

            gNodeToCoord(coordNum,1) = x; 

            gNodeToCoord(coordNum,2) = y; 

            coordNum = coordNum + 1; 

            if(shouldPlot) 

                plot(x,y,'b*'); 

            end 

        end 

    end 

else 

    %get a lot of variables 

     

    numThetaElements = round(pi/theta_step); 

     

    %want one fourth to be small, 3/4 to be big 

    numSmall = 1/4 * numThetaElements 

    numBig = 3/4 * numThetaElements 

     

    %we know we need it to add up to pi... 

    toDivide = bigMult * numBig + numSmall; 

    small_step = pi / toDivide; 

    big_step = small_step * bigMult; 

     

    %keep track of our elements now 

    currentTheta = 0; 

     

    for thetaCount=0:numThetaElements 

        if(currentTheta > pi) 

            currentTheta = pi; 

        end 

         

        for r=r_begin:r_step:r_end 

            %get the x 

            x = r*cos(currentTheta); 

            y = r*sin(currentTheta); 

            gNodeToCoord(coordNum,1) = x; 

            gNodeToCoord(coordNum,2) = y; 

            coordNum = coordNum + 1; 

            if(shouldPlot) 

                plot(x,y,'b*'); 

            end 

        end 

         

        %decide which to add 

        if(thetaCount < numBig/2 - 1) 

            currentTheta = currentTheta + big_step; 

        elseif (thetaCount < numBig/2 -1 + numSmall) 

            currentTheta = currentTheta + small_step; 

        else 

            currentTheta = currentTheta + big_step; 

        end 

         

    end 

     

    plot(0.4,2.5,'bo'); 

    plot(-0.4,2.5,'bo'); 

     

end 

%now go through and do connectivity 

%we need the number of elements now strangely enough... 

%num elements is the same as the number of elements per slice 

%times the number of slices. so. 

numElementsPerSlice = r_range/r_step 

numSlices = round(theta_range/theta_step) 

numElements = numElementsPerSlice*numSlices; 

numElements = round(numElements) 

connectMap = zeros(numElements,4); 

%make the connectivity map 

%start with sliceCounter and sideCounter 

elementCounter = 1; 

for sliceCounter=1:numSlices 

    for sideCounter=1:numElementsPerSlice 

        %get the lower left 

        LL = sideCounter + (sliceCounter-

1)*(numElementsPerSlice+1); 

        LR = LL + 1; 

         

        UL = sideCounter + 

(sliceCounter)*(numElementsPerSlice+1); 

        UR = UL + 1; 

doPenaltyMethod = false; 

doFinerMeshing = false; 

[gNodeToCoord, connectMap] = 

archMesher(r_step,theta_step,shouldplot,doFinerMeshing,big_mult); 

%last row of connectMap are boundary condition nodes 

totalRows = max(size(gNodeToCoord)); 

numElementsOnEdge = 1/r_step + 1; 

nodesThatAreFixed = []; 

for i=1:numElementsOnEdge 

    nodesThatAreFixed = [nodesThatAreFixed totalRows-(i-1)]; 

end 

fixedTempNodes = nodesThatAreFixed; 

thesize = size(connectMap); 

numElements = thesize(1); 

thesize = size(gNodeToCoord); 

numNodes = thesize(1); 

kGlobal = spalloc(numNodes,numNodes,5*numNodes); 

R = zeros(numNodes,1); 

R_b = zeros(numNodes,1); 

for currElement = 1:numElements 

    if (mod(currElement,50) == 0) 

        currElement 

    end 

    %get the new k matrix? 

    miniK = elementK(currElement,gNodeToCoord,connectMap,doThermalHole); 

     

    %get the RHS loading? 

    miniRloading = 10*elementLoading(currElement,gNodeToCoord,connectMap); 

    %pause 

    miniRboundary = elementBoundary(currElement,gNodeToCoord,connectMap); 

     

    R = assembleLoading(R,miniRloading,currElement,connectMap); 

    R_b = assembleLoading(R_b,miniRboundary,currElement,connectMap); 

    %pause 

    %pause(0.05) 

     

    %assemble this 

    kGlobal = assembleK(kGlobal,miniK,currElement,connectMap); 

     

    if(doPenaltyMethod) 

        %get the penalty k 

        %get the penalty RHS 

        %add them 

        asd = 1; 

    end 

     

     

end 

R = R - R_b; 

%deal with the boundary conditions 

kCopy = kGlobal; 

Rcopy = R; 

%get a list of the nodes to eliminate in descending order 

fixedTempNodes = sort(fixedTempNodes); 

fixedTempNodes = fliplr(fixedTempNodes); 

if(~doPenaltyMethod) 

%loop through these 

    for i=1:max(size(fixedTempNodes)) 

        currNode = fixedTempNodes(i); 

        %somehow delete this row, pad this column with the BC in the right 

        %spot, and add it to the right hand side 

        %delete row 

        kGlobal(currNode,:) = []; 

        R(currNode,:) = []; 

        %get the column 

        theCol = kGlobal(:,currNode); 

        theCol = theCol * T_0 

        R = R - theCol; 

        %delete this column too! 

        kGlobal(:,currNode) = []; 

    end 

else 

    %do the penalty method!! 

     

    maxK = max(max(kGlobal)); 

    Pstar = maxK*PstarFactor; 

     

    for i=1:max(size(fixedTempNodes)) 

        whichToHit = fixedTempNodes(i); 

         

        kGlobal(whichToHit,whichToHit) = kGlobal(whichToHit,whichToHit) + 

Pstar; 

         

        R(whichToHit,1) = R(whichToHit,1) + Pstar * T_0; 

    end 

     

end 

theAns = inv(kGlobal) * R 

disp('inserting known ones') 

fixedTempNodes = sort(fixedTempNodes); 

if(~doPenaltyMethod) 

    for i=1:length(fixedTempNodes) 

        row = fixedTempNodes(i); 

        theAns = [theAns(1:row-1); T_0; theAns(row:end)]; 

    end 



         

         

        %plot this 

        if(shouldPlot) 

            xs = [gNodeToCoord(LL,1) gNodeToCoord(LR,1) ... 

                  gNodeToCoord(LR,1) gNodeToCoord(UR,1) ... 

                  gNodeToCoord(UR,1) gNodeToCoord(UL,1) ... 

                  gNodeToCoord(UL,1) gNodeToCoord(LL,1) ... 

                   ]; 

            ys = [gNodeToCoord(LL,2) gNodeToCoord(LR,2) ... 

                  gNodeToCoord(LR,2) gNodeToCoord(UR,2) ... 

                  gNodeToCoord(UR,2) gNodeToCoord(UL,2) ... 

                  gNodeToCoord(UL,2) gNodeToCoord(LL,2) ... 

                   ]; 

            line(xs,ys); 

            axis([-3 3 0 3]); 

            pause(0.05); 

        end 

         

        connectMap(elementCounter,:) = [LL LR UR UL]; 

        elementCounter = elementCounter + 1; 

         

    end 

     

end 

end 

function [ gNodeToCoord, connectMap ] = rectMesher( 

length,height,x_step,y_step,shouldPlot ) 

%RECTMESHER Summary of this function goes here 

%   Detailed explanation goes here 

if(shouldPlot) 

    figure(1) 

    clf 

    hold on 

    axis([0 length 0 height]); 

end 

numPoints = (length/x_step + 1)*(height/y_step + 1); 

coordNum = 1; 

gNodeToCoord = zeros(numPoints,2); 

for currX=0:x_step:length 

    for currY = 0:y_step:height 

        gNodeToCoord(coordNum,1) = currX; 

        gNodeToCoord(coordNum,2) = currY; 

         

        coordNum = coordNum + 1; 

         

        if(shouldPlot) 

            plot(currX,currY,'b*'); 

        end 

         

    end 

end 

numElementsInY = height/y_step; 

numElementsInX = length/x_step; 

totalElements = numElementsInX * numElementsInY; 

connectMap = zeros(totalElements,4); 

currElement = 1; 

for currSlice=1:numElementsInX 

    for currTop=1:numElementsInY 

         

        LL = currTop + (currSlice-1)*(numElementsInY+1); 

        UL = LL + 1; 

         

        LR = currTop + (currSlice) * (numElementsInY+1); 

        UR = LR + 1; 

         

        connectMap(currElement,:) = [LL LR UR UL]; 

         

        currElement = currElement + 1; 

         

        if(shouldPlot) 

            xs = [gNodeToCoord(LL,1) gNodeToCoord(LR,1) ... 

                  gNodeToCoord(LR,1) gNodeToCoord(UR,1) ... 

                  gNodeToCoord(UR,1) gNodeToCoord(UL,1) ... 

                  gNodeToCoord(UL,1) gNodeToCoord(LL,1) ... 

                   ]; 

            ys = [gNodeToCoord(LL,2) gNodeToCoord(LR,2) ... 

                  gNodeToCoord(LR,2) gNodeToCoord(UR,2) ... 

                  gNodeToCoord(UR,2) gNodeToCoord(UL,2) ... 

                  gNodeToCoord(UL,2) gNodeToCoord(LL,2) ... 

                   ]; 

            line(xs,ys); 

            pause(0.05); 

             

        end 

         

    end 

end 

end 

 

 

 

function [ phis,phipartials] = getPhis() 

%GETPHIS Summary of this function goes here 

%   Detailed explanation goes here 

end 

theAns 

%plotting this shit, CRAP man!!! 

%need a xdata vector like this: 

% xNode1el1 xNode1el2 

% xNode2el1 xNode2el2... etc 

% xNode3el1 

% xNode4el1  

%same for the y thing, and then just the node value at each! 

xdata = zeros(4,numElements); 

ydata = zeros(4,numElements); 

tempData = zeros(4,numElements); 

for currElement=1:numElements 

    nodes = connectMap(currElement,:); 

     

    thisX = zeros(4,1); 

    thisY = zeros(4,1); 

    thisTemp = zeros(4,1); 

    for i=1:4 

        theNode = nodes(1,i); 

        thisX(i,1) = gNodeToCoord(theNode,1); 

        thisY(i,1) = gNodeToCoord(theNode,2); 

        thisTemp(i,1) = theAns(theNode); 

    end 

     

    xdata(:,currElement) = thisX; 

    ydata(:,currElement) = thisY; 

    tempData(:,currElement) = thisTemp; 

end 

patch(xdata,ydata,tempData,'EdgeColor','interp'); 

 

 

function [ scalar ] = loadingFunction(combined) 

%LOADINGFUNCTION Summary of this function goes here 

%   Detailed explanation goes here 

%takes in x and y, returns the value of the loading function 

x = combined(:,1); 

y = combined(:,2); 

f = @(r,theta) 8 .* sin(2 .* theta) ./ r.^2; 

theta = atan(y./x); 

r = sqrt(x.^2 + y.^2); 

for i = 1:length(theta) 

    if(theta(i) < 0) 

        theta(i) = theta(i) + pi; 

    end 

end 

%pause(0.05) 

scalar = f(r,theta); 

end 

 

function [ x1, x2 ] = getX1X2(currElement,gNodeToCoord,connectMap) 

%GETJACOBIAN Summary of this function goes here 

%   Detailed explanation goes here 

[phis, phipartials] = getPhis(); 

%ok crap. So we have to build up the mapping matrix essentially 

%and then take the determinant of that to get the actual jacobian function 

%which may or may not be a constant 

%first, get an expression for x1 in terms of phis' 

%do this first by getting a list of all the x coordinates for these 

%nodes 

globalNodes = connectMap(currElement,:); 

gXcoords = zeros(1,4); 

gYcoords = zeros(1,4); 

for i=1:4 

    gXcoords(i) = gNodeToCoord(globalNodes(i),1); 

    gYcoords(i) = gNodeToCoord(globalNodes(i),2); 

end 

gCoords = [gXcoords; gYcoords]; 

%now that we have all of our x coordinates and y coordinates, 

%multiply each one of these by the associated phi's to get the mapping 

x1 = @(z1,z2)   phis{1}(z1,z2).*gCoords(1,1) + 

phis{2}(z1,z2).*gCoords(1,2) + ... 

                phis{3}(z1,z2).*gCoords(1,3) + 

phis{4}(z1,z2).*gCoords(1,4); 

x2 = @(z1,z2)   phis{1}(z1,z2).*gCoords(2,1) + 

phis{2}(z1,z2).*gCoords(2,2) + ... 

                phis{3}(z1,z2).*gCoords(2,3) + 

phis{4}(z1,z2).*gCoords(2,4); 

end 

 

function [ answer ] = getThermalConductivity(x,y) 

%GETTHERMALCONDUCTIVITY Summary of this function goes here 

%   Detailed explanation goes here 

%this just returns the thermal conductivity of the arch.  

%so basically, the center of this hole is located at (0,2.5) and rc is 

%0.4... 

centerX = 0; 

centerY = 2.5; 

r_hole = 0.4; 

k_other = 1*10^-3; 

k_all = 1; 

%get the distance away for each of the results 

answer = zeros(max(size(x)),1); 

for i = 1:length(answer) 

    %get the distance away 



 

 

phi1 = @(z1,z2) 0.25 .* (1-z1).*(1-z2); 

phi2 = @(z1,z2) 0.25 .* (1+z1).*(1-z2); 

phi3 = @(z1,z2) 0.25 .* (1+z1).*(1+z2); 

phi4 = @(z1,z2) 0.25 .* (1-z1).*(1+z2); 

 

phis = {phi1 phi2 phi3 phi4}; 

 

dphi1dz1 = @(z1,z2) 0.25 .* (-1 + z2); 

dphi1dz2 = @(z1,z2) 0.25 .* (-1 + z1); 

 

dphi2dz1 = @(z1,z2) 0.25 .* ( 1  - z2); 

dphi2dz2 = @(z1,z2) 0.25 .* (-1  - z1); 

 

dphi3dz1 = @(z1,z2) 0.25 .* (1 + z2); 

dphi3dz2 = @(z1,z2) 0.25 .* (1 + z1); 

 

dphi4dz1 = @(z1,z2) 0.25 .* (-1  - z2); 

dphi4dz2 = @(z1,z2) 0.25 .* ( 1  - z1); 

 

phipartials = { dphi1dz1 dphi1dz2; 

                dphi2dz1 dphi2dz2; 

                dphi3dz1 dphi3dz2; 

                dphi4dz1 dphi4dz2;}; 

             

 

 

end 

 

function [ gaussPoints,gaussWeights ] = getGauss(numPoints) 

%GETGAUSS Summary of this function goes here 

%   Detailed explanation goes here 

 

if(numPoints == 5) 

     

    gaussPoints = zeros(5,1); 

    gaussWeights = zeros(5,1); 

 

%     gaussPoints = [0.1834346424956498049394761;-

0.1834346424956498049394761; 

%                    0.5255324099163289858177390;-

0.5255324099163289858177390; 

%                    0.7966664774136267395915539;-

0.7966664774136267395915539; 

%                    0.9602898564975362316835609;-

0.9602898564975362316835609]; 

%  

%     gaussWeights = 

[0.3626837833783619829651504;0.3626837833783619829651504; 

%                     

0.3137066458778872873379622;0.3137066458778872873379622; 

%                     

0.2223810344533744705443560;0.2223810344533744705443560; 

%                     

0.1012285362903762591525314;0.1012285362903762591525314]; 

    gaussPoints = [ -0.9061798459386639927976269; 

                    -0.5384693101056830910363144; 

                    0.0000000000000000000000000; 

                    0.5384693101056830910363144; 

                    0.9061798459386639927976269]; 

 

    gaussWeights = [0.2369268850561890875142640; 

                    0.4786286704993664680412915; 

                    0.5688888888888888888888889; 

                    0.4786286704993664680412915; 

                    0.2369268850561890875142640]; 

                 

elseif(numPoints == 8) 

    gaussPoints = [0.1834346424956498049394761;-

0.1834346424956498049394761; 

                   0.5255324099163289858177390;-

0.5255324099163289858177390; 

                   0.7966664774136267395915539;-

0.7966664774136267395915539; 

                   0.9602898564975362316835609;-

0.9602898564975362316835609]; 

 

    gaussWeights = 

[0.3626837833783619829651504;0.3626837833783619829651504; 

                    

0.3137066458778872873379622;0.3137066458778872873379622; 

                    

0.2223810344533744705443560;0.2223810344533744705443560; 

                    

0.1012285362903762591525314;0.1012285362903762591525314];      

else 

    %do 2 point rule 

    gaussPoints = zeros(2,1); 

    gaussPoints = zeros(2,1); 

     

     

    gaussPoints = ... 

                [ 0.5773502691896257645091488; -

0.5773502691896257645091488]; 

    thisX = x(i); 

    thisY = y(i); 

     

    thisDist = sqrt((thisX-centerX).^2 + (thisY-centerY).^2); 

     

    if(thisDist <= 0.4) 

        answer(i) = k_other; 

    else 

        answer(i) = k_all; 

    end 

     

end 

end 

 

function [ jacobianFunction, F_UL, F_UR, F_LL, F_LR ] = getJacobian( 

currElement, gNodeToCoord, connectMap ) 

%GETJACOBIAN Summary of this function goes here 

%   Detailed explanation goes here 

[phis, phipartials] = getPhis(); 

%ok crap. So we have to build up the mapping matrix essentially 

%and then take the determinant of that to get the actual jacobian function 

%which may or may not be a constant 

%first, get an expression for x1 in terms of phis' 

%do this first by getting a list of all the x coordinates for these 

%nodes 

globalNodes = connectMap(currElement,:); 

gXcoords = zeros(1,4); 

gYcoords = zeros(1,4); 

for i=1:4 

    gXcoords(i) = gNodeToCoord(globalNodes(i),1); 

    gYcoords(i) = gNodeToCoord(globalNodes(i),2); 

end 

gCoords = [gXcoords; gYcoords]; 

%now that we have all of our x coordinates and y coordinates, 

%multiply each one of these by the associated phi's to get the mapping 

x1 = @(z1,z2)   phis{1}(z1,z2).*gCoords(1,1) + 

phis{2}(z1,z2).*gCoords(1,2) + ... 

                phis{3}(z1,z2).*gCoords(1,3) + 

phis{4}(z1,z2).*gCoords(1,4); 

x2 = @(z1,z2)   phis{1}(z1,z2).*gCoords(2,1) + 

phis{2}(z1,z2).*gCoords(2,2) + ... 

                phis{3}(z1,z2).*gCoords(2,3) + 

phis{4}(z1,z2).*gCoords(2,4); 

%and the mapping F matrix is like dx1/dz1 etc. so 4x4 cell array 

% 

% | dx1 / dz1     dx1 / dz2   | 

% | dx2 / dz1     dx2 / dz2   | 

% 

F_UL = @(z1,z2) phipartials{1,1}(z1,z2).*gXcoords(1) + 

phipartials{2,1}(z1,z2).*gXcoords(2) + ... 

                phipartials{3,1}(z1,z2).*gXcoords(3) + 

phipartials{4,1}(z1,z2).*gXcoords(4); 

F_LL = @(z1,z2) phipartials{1,2}(z1,z2).*gXcoords(1) + 

phipartials{2,2}(z1,z2).*gXcoords(2) + ... 

                phipartials{3,2}(z1,z2).*gXcoords(3) + 

phipartials{4,2}(z1,z2).*gXcoords(4); 

F_UR = @(z1,z2) phipartials{1,1}(z1,z2).*gYcoords(1) + 

phipartials{2,1}(z1,z2).*gYcoords(2) + ... 

                phipartials{3,1}(z1,z2).*gYcoords(3) + 

phipartials{4,1}(z1,z2).*gYcoords(4); 

F_LR = @(z1,z2) phipartials{1,2}(z1,z2).*gYcoords(1) + 

phipartials{2,2}(z1,z2).*gYcoords(2) + ... 

                phipartials{3,2}(z1,z2).*gYcoords(3) + 

phipartials{4,2}(z1,z2).*gYcoords(4); 

%literally the determinant of the stuff above 

jacobianFunction = @(z1,z2) F_UL(z1,z2) .* F_LR(z1,z2) - F_UR(z1,z2) .* 

F_LL(z1,z2); 

end 

 

function [ fInverse ] = getFinverse(currElement,gNodeToCoord,connectMap) 

%GETFINVERSE Summary of this function goes here 

%   Detailed explanation goes here 

 

%f inverse is essentially the 2x2 matrix of dz1/dx1 etc etc 

 

%in matrix form: 

 

[ jacobianFunction, F_UL, F_UR, F_LL, F_LR ] = 

getJacobian(currElement,gNodeToCoord,connectMap); 

%ok, make the matrix thing 

 

f = @(z1,z2)    [F_UL(z1,z2) F_UR(z1,z2); 

                 F_LL(z1,z2) F_LR(z1,z2)]; 

 

%these are already mixed up 

fInverse         = @(z1,z2) (1./jacobianFunction(z1,z2)) .* [F_LR(z1,z2) -

F_UR(z1,z2); 

                                                             -F_LL(z1,z2) 

F_UL(z1,z2);]; 

 

 

 

end 

 



    gaussWeights = ... 

                [ 1.0000000000000000000000000; 

1.0000000000000000000000000]; 

     

     

end 

 

 

 

end 

 

 


