
Peter Cottle

CS 184 Fall 2011

Final Project Report

GSim – An Interactive Gravity Simulator

Background:

 Particle simulators have been implemented many times over the history of

computing and have been used for a wide range of applications from animation

generation, molecule analysis, galaxy formation research, videogames, and even

some forms of art[1]. My final project “GSim” set out to create a gravity particle

simulator that supported user interaction, file import / export, and intuitive

navigation to deliver an enlightening (and fun) user experience.

 Education in schools has recently been trending towards providing a more

interactive, individualized experience for each student through the use of

technology[2]. Gravity itself is a particular example where live interaction can really

enhance student learning in the classroom, especially since all students come in

with a pre-conceived notion of gravity as a constant force. If we can show our

students the mutual attraction nature of gravity through the use of a simple GUI

application like GSim, we can both inspire students to pursue the sciences and

enhance the learning experience.

Description of Project:

 GSim is a gravity particle simulator that is capable of simulating dozens of

particles while interacting with the user in an intuitive way. It uses a Verlet

integration scheme to preserve the energy of the simulated system and employs a

set of 3-2-1 Euler angles for camera orientation in space. User interaction for

selecting particles is as natural as a mouse click, and the insertion procedure for

particles only requires a few click-drags to specify position, mass, and velocity.

 GSim simulates all particles in three full dimensions, unlike many web-based

particle simulators that exist today. It’s closest relative is Universe Sandbox®

available on Steam, a commercially successful game that allows users to simulate

universe creation and destruction. GSim aims to recreate this experience for free.

Implementation:

 The implementation of this project was mainly divided into three categories:

integration method, camera navigation, and user interaction in 3D. The rest of the

implementation was fairly standard object-oriented programming with extra

methods to render the scene, calculate particle trails, perform file input/output, and

other miscellaneous tasks.

3.1: Integration Method

Euler integration, Runge-Kutta integration, Midpoint integration, and many

other explicit integration schemes are widely popular in ODE-solving (like ode45 in

Matlab) and are easy to implement. Their main drawback is that they do not

preserve the mechanical energy of the system (in both potential and kinetic form).

The mathematical proof of this is quite rigorous, but proof-by example is easy to

demonstrate (and was covered in class as well). The summary of the shortcoming of

these integration methods is that they assume the acceleration is constant over a

given timestep, when acceleration is commonly a function of position (like in

systems with springs or gravity). In these systems, the acceleration of a particle

actually changes constantly throughout time, so an explicit integration method will

always over-estimate (or under estimate) the acceleration during the timestep and

either add or subtract energy to the system. The simplest example of this is Euler

integration with a simple spring-mass system, where the acceleration estimate will

always be an overestimate on one side and an underestimate on the other. This

leads to energy addition through time, causing the system to “blow up” or lose

stability.

The Verlet integration scheme overcomes this simulation obstacle by making

the calculation for the next velocity a function of current velocity, the current

acceleration, and the acceleration at the next timestep forward. If acceleration is

dependent on velocity (e.g. drag in fluid simulation), this requires the additional

overhead of an implicit equation solver. If acceleration is instead simply a function

of position, this integration scheme reduces to a simple “leapfrog” integration

method.

Because of this acceleration calculation difference, Verlet integration actually

maintains the energy of dynamic systems and leads to very stable behavior during

simulation. In my implementation of GSim, you can both integrate forward in time

and backwards in time with variable timesteps. Because of my choice of integration

method, one can integrate forward for several minutes, pause, integrate backwards

with a different timestep, and arrive at the exact same system configuration as

before.

3.2: 3-2-1 Set of Euler Angles

 Camera orientation and navigation represent a non-trivial problem to

overcome with computer graphics simulation. An additional difficulty with this is

that the OpenGL community recommends loading from identity for each frame draw

(both to simplify drawing within the scene and to eliminate memory overflow

problems with the matrix stack). Thus, a navigation and orientation method must be

produced that allows intuitive translation and orientation in 3D space, has a

constant memory overhead, performs in constant time, and is capable of orienting

the camera from the original configuration on every frame draw.

 The main challenge with intuitive interaction is that all changes in

orientation and position are relative to the current reference frame. When a user

presses the left or right arrow keys to yaw, he or she wants to yaw about whatever

direction is “up” for the camera in the current configuration, not the actual positive z

axis in the world space. This presents a considerable challenge, for the up

“direction” can be any vector in 3D space (since the user can orient themselves to

any configuration). In planar 2D motion (in 3D space) in applications like first-

person and third-person shooters, this problem becomes less challenging because

the user is limited to two rotations (yaw and pitch) and two translations (within the

plane). Thus, simple variables can keep track of the current orientation, and one

rotation in yaw will never affect the pitch variable. This is not true for actual 3D

motion, hence the challenge to overcome.

 Fortunately for me I am concurrently enrolled in ME 175, the mechanical

engineering class of Intermediate Dynamics taught by Professor Oliver O’Reilly (a

distinguished professor and winner of four teaching awards at Berkeley). In class,

Professor O’Reilly presented and discussed a paper on rocket navigation that uses

one gyroscope and accelerometer for each of the three principle axes of the rigid

body. One of the main results of the paper was the determination of the rate of

change of each Euler angle given a measured angular velocity about each principle

Euler basis vector. This result essentially relates the local angular velocity to the

global Euler angle rate of change. This is the exact relation I needed, for I wanted to

allow the user to specify local angular velocities to navigate while maintaining a

global system of positioning. This relation is provided below:

Although this equation was used for a quite different application, it had

direct use in my camera orientation and navigation method. The main

computational flow for the navigation and orientation for the camera is described

below:

1. Allocate a translation vector, three Euler angles, and three basis

vectors into memory.

a. The three basis vectors will be described as e1, e2, and e3 (as

in common notation).

b. For the camera, the e1 direction will be looking “forward” into

the screen, the e2 direction will be the horizontal direction in

the plane of the screen, and the e3 direction will be the vertical

direction in the plane of the screen.

2. Initialize the Euler angles and translation vector to a default starting

value in order to “point” the user at the origin.

3. Calculate the three Euler basis vectors based on the concatenation of

the 3-2-1 Euler angle rotations. Essentially, combine the yaw, pitch,

and roll rotation matrices into a combined rotation matrix.

4. Multiply this combined rotation matrix into the three axis vectors (X,

Y, and Z) to obtain the Euler basis vectors.

5. In order to orient the camera, use the OpenGL utility “lookAt”

command that takes in a camera position, a “look at” position, and a

roll amount:

a. Calculate the position by specifying the orientation vector

b. Calculate the “lookat” position by adding the e1 “looking

forward” vector to the translation vector to obtain a point

forward from the camera.

c. Specify the roll by providing the e3 vertical direction of the

camera.

6. When a user specifies a translation by using the WASD, Q, and

spacebar keys, add small fractions of the three basis vectors (one for

each desired direction) to the translation vector to move the camera

but preserve orientation.

7. To change the orientation and preserve translation, allow the user to

specify a local yaw, local pitch, or local roll by pressing one of the

arrow keys or the + and – keys.

a. This keypress translates to inducing an angular velocity about

one of the three Euler basis vectors.

b. Take each one of these specified angular velocities and

calculate the corresponding change in the three Euler angles as

prescribed by the paper result.

c. Combine these Euler angle changes together to get a net rate of

Euler angle change.

d. Integrate this change in time, and calculate the three new Euler

angles.

8. Repeat part 3 until program exit.

The above implementation gives an orientation scheme that allows intuitive

translation and orientation of the camera while preserving a global positioning

system loading from identity on each frame, using constant memory, and

performing in constant time.

Additionally, this orientation scheme retains the orthogonality of the rotation

matrix (an issue for the method presented in class) in addition to avoiding

numerical error buildup. The main drawback of Euler angles is the gimbal-lock

scenario where two axes become aligned and a loss of a degree of freedom occurs. If

a user navigates into gimbal-lock and then tries to rotate about a degree of freedom

that has been lost, another entirely different motion will occur instead. For example,

if one were to pitch all the way down to 90 degrees and then attempt to yaw, the

camera would instead roll because those two axes are now co-linear and anti-

parallel.

My orientation method overcomes this issue entirely because the

orientation is calculated from identity for each frame draw. A 3-2-1 set of Euler

angles can represent any orientation; the only problem arises when one tries to

navigate away from a gimbal-lock scenario. Because my method never interpolates

between Euler angle representations and instead recalculates the configuration

every time, it avoids any gimbal lock issues and thus eliminates the main drawback

of Euler angles.

Furthermore, the key feature of this orientation scheme is that it allows one

variable (the psi angle) to describe the local yaw amount of the camera. Because the

3-2-1 set of Euler angles only yaws once (and it yaws before any other rotation

occurs), the psi angle can be easily used to describe the amount of yaw in the

current orientation. Only this amount of yaw affects the angle of the XZ plane to the

camera, which is absolutely critical for the later ray-picking method for user

interaction.

In conclusion, the orientation and navigation method was the main objective

to overcome when programming GSim and my proudest result from this project. A

video of this navigation is available on Youtube via the link given in the appendix.

3.3 Graphic interaction in 3D space for particle insertion, mass selection,

and velocity.

 Once the orientation and navigation method was implemented, I next needed

a way to allow the user to interact with the simulation. This included three separate

interactions: selecting a particle for deletion, launching a particle with a random

velocity from the current position, and inserting a particle in 3D space.

 All of these interactions use a simple ray-picking method that utilizes the

OpenGL “unProject” utility function. A mouse coordinate is mapped into 3D space on

both the near and far drawing planes. These two coordinates then form a ray (with a

start location and direction). This ray is then used for the three interactions.

 The first “selection” interaction uses the ray sphere intersection test to find

the closest sphere along this way. Once this sphere is found, it is “selected” and this

selection is represented by a rotating torus around its body. The user then can

either delete this particle with the delete key or de-select it by clicking it again.

 The second “launch random particle” interaction is also easy, for it uses the

ray origin position as the position for a new particle. This is then supplemented by a

simple random velocity.

 The third particle insertion interaction is far more complicated. It involves

specifying a position, a velocity, and a mass for a given particle. This represents

seven different variables that have to be calculated from a minimal amount of user

interaction. Additionally, the difficulty with mouse interaction in 3D space is that

there is no way of easily determining how “far” away the click was meant to be.

 My implementation of this was inspired by Google Sketchup which assumes a

default “intersection plane” depending on orientation. I intersect all mouse clicks

with the XZ or YZ plane that intersects the origin. Additionally, I choose between the

XZ or YZ plane depending on the psi “yaw” variable from the orientation scheme,

allowing for a very easy way to determine which plane the user wants depending on

their orientation. Because both intersect planes are co-planar with the yaw vector,

these two planes are easily differentiated with a single variable.

 Position, mass, and velocity each have a graphical representation during the

insertion process. Position is represented by the position on the screen (obviously)

and also a large torus centered at the origin that gives a sense of scale to the radius.

The mass is relative to the volume of the particle, and a cone represents the velocity.

The orientation of the cone describes the direction of the velocity and the width

describes the magnitude. With these three elements and the plane intersection with

the ray picking, user interaction with GSim is natural and frictionless.

Results:

 After implementation was complete, I had a gravity simulator that was quite

fun to play with and also educational about the laws of gravitational attraction. I

tested the user interaction by asking several of my friends to insert a particle with

no further instruction. After the first click, people realize a position is being

modified and then move to where they want the particle to be. The second two

clicks are equally natural for mass and velocity, and then the particle fires off once

it’s completely selected. It brought a smile to my face to see 3D interaction being so

intuitive in a program I wrote. I am also offering up the source of this project on

Github in hopes that someone will fork the project and expand on it (or perhaps give

it to a teacher to use in class).

 In conclusion, I am pleased with my final project and specifically pleased

with the ways I overcame implementation challenges.

References:

[1] "Nanotechnology Now - Press Release: "Linux Labs Announces Completion of

Key Development Milestone for Its Super Computer Operating System,

NimbusOs; This Milestone Will Expand the Available Markets Its NimbusOs

Products Can Be Sold To, Such as the Nanotechnology Market

"" Nanotechnology. Searchlight Solutions, 12 Nov. 2011. Web. 04 Dec. 2011.

http://www.nanotech-now.com/news.cgi?story_id=43850.

[2] Glum, Julia. "More Colleges Using Video Games as Educational Tools - The

Independent Florida Alligator: Campus." The Independent Florida Alligator:

We Inform. You Decide. 2 Dec. 2011. Web. 04 Dec. 2011.

http://www.alligator.org/news/campus/article_94efe934-1ca9-11e1-808f-

001871e3ce6c.html

[3] Pritchard, Carolyn. "How the Physical Distribution of Digital Goods Impacts

the Environment — Cleantech News and Analysis." GigaOM — Tech News,

Analysis and Trends. 16 Aug. 2007. Web. 04 Dec. 2011.

http://gigaom.com/cleantech/how-the-physical-distribution-of-digital-

goods-impacts-the-environment/

Appendix:

 It is estimated that an entire kilogram of carbon dioxide is produced for the

manufacturing and delivery of a compact disc[3]. In order to strive for a carbon-

neutral educational environment, I have made the video that accompanies this

project report available online at Youtube via the link below:

http://youtu.be/r_68uPETMJk

Google’s data centers are industry leaders in Green technology, and it is my

hope that this video can serve wider audiences while maintaining a minimum

carbon footprint.

http://www.nanotech-now.com/news.cgi?story_id=43850.
http://www.alligator.org/news/campus/article_94efe934-1ca9-11e1-808f-001871e3ce6c.html
http://www.alligator.org/news/campus/article_94efe934-1ca9-11e1-808f-001871e3ce6c.html
http://gigaom.com/cleantech/how-the-physical-distribution-of-digital-goods-impacts-the-environment/
http://gigaom.com/cleantech/how-the-physical-distribution-of-digital-goods-impacts-the-environment/
http://youtu.be/r_68uPETMJk

